Non-reliance of metazoans on stromatolite-forming microbial mats as a food resource
نویسندگان
چکیده
Grazing and burrowing organisms usually homogenise microalgal mats that form on benthic sediments of many aquatic ecosystems. In the absence of this disruption, microalgal mats can accrete laminated deposits (stromatolites). Stromatolites are rare in modern coastal ecosystems, but persist at locations where metazoans are largely excluded. This study aimed to assess the trophic structure at stromatolite locations where metazoans co-occur, to determine the grazing influence exerted by the metazoans on the stromatolite-forming microalgae (cyanobacteria and diatoms). Stable isotope signatures (δ13C and δ15N) were used as food-web tracers and dietary composition of consumers was calculated using source mixing models. Results clearly demonstrate that the dominant macrofaunal grazers do not utilise stromatolite material as a food resource, but rather subsist on autochthonous macroalgae. For instance, the mean (±SD) dietary composition of two of the most abundant grazers, Melita zeylanica (Amphipoda) and Composetia cf. keiskama (Polychaeta), consisted of 80 ± 11% and 91 ± 7% macroalgae, respectively. This suggests that the stromatolite-forming benthic microalgae are not disrupted significantly by grazing pressures, allowing for the layered mineralisation process to perpetuate. Additionally, grazers likely have a restrictive influence on pool macroalgae, maintaining the competitive balance between micro- and macroalgal groups.
منابع مشابه
Aggregation Phenomena in Cyanobacterial, Stromatolite Analogues
Earth’s biological history is largely the story of microbial evolution. If one is to understand the evolution of such fundamental processes as photosynthesis, it is imperative to recognize and interpret microbial fossils. To these ends, we examine the forces that shape a modern cyanobacterial mat from the hot springs of Yellowstone that is thought to grow in a manner similar to an ancient struc...
متن کاملNew multi-scale perspectives on the stromatolites of Shark Bay, Western Australia.
A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world's most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight 'Stro...
متن کاملMicrobial Sedimentology of Stromatolites in Neoproterozoic Cap Carbonates
—Stromatolite shapes, sizes, and spacings are products of microbial processes and interactions with topography, sedimentation, and flow. Laboratory experiments and studies of modern microbial mats and sediments can help reconstruct processes that shaped some typical stromatolite forms and some atypical microbially influenced sediments from Neoproterozoic cap carbonates. Studies of modern, cohes...
متن کاملFeedbacks between flow, sediment motion and microbial growth on sand bars initiate and shape elongated stromatolite mounds
a r t i c l e i n f o a b s t r a c t Keywords: microbial mats biostabilization waves ripples platform stromatolite morphology Elongated stromatolites are often used as indicators of current direction and shoreline orientation, especially in paleoenvironmental reconstructions. However, mechanisms that create shore-parallel, m-scale elongated stromatolite mounds in carbonate sand are not well un...
متن کاملChanging Microspatial Patterns of Sulfate-Reducing Microorganisms (SRM) during Cycling of Marine Stromatolite Mats
Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing "non-lithifying" (Type-1) and "lithifying" (Type-2) mats. Our results revealed ...
متن کامل